“Deep Convolutional GAN (DCGAN)“作业答案

@TOC“)

import torch
from torch import nn
from tqdm.auto import tqdm
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
torch.manual_seed(0) # Set for testing purposes, please do not change!


def show_tensor_images(image_tensor, num_images=25, size=(1, 28, 28)):
    '''
    Function for visualizing images: Given a tensor of images, number of images, and
    size per image, plots and prints the images in an uniform grid.
    '''
    image_tensor = (image_tensor + 1) / 2
    image_unflat = image_tensor.detach().cpu()
    image_grid = make_grid(image_unflat[:num_images], nrow=5)
    plt.imshow(image_grid.permute(1, 2, 0).squeeze())
    plt.show()
    # UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
# GRADED FUNCTION: Generator
class Generator(nn.Module):
    '''
    Generator Class
    Values:
        z_dim: the dimension of the noise vector, a scalar
        im_chan: the number of channels in the images, fitted for the dataset used, a scalar
              (MNIST is black-and-white, so 1 channel is your default)
        hidden_dim: the inner dimension, a scalar
    '''
    def __init__(self, z_dim=10, im_chan=1, hidden_dim=64):
        super(Generator, self).__init__()
        self.z_dim = z_dim
        # Build the neural network
        self.gen = nn.Sequential(
            self.make_gen_block(z_dim, hidden_dim * 4),
            self.make_gen_block(hidden_dim * 4, hidden_dim * 2, kernel_size=4, stride=1),
            self.make_gen_block(hidden_dim * 2, hidden_dim),
            self.make_gen_block(hidden_dim, im_chan, kernel_size=4, final_layer=True),
        )

    def make_gen_block(self, input_channels, output_channels, kernel_size=3, stride=2, final_layer=False):
        '''
        Function to return a sequence of operations corresponding to a generator block of DCGAN, 
        corresponding to a transposed convolution, a batchnorm (except for in the last layer), and an activation.
        Parameters:
            input_channels: how many channels the input feature representation has
            output_channels: how many channels the output feature representation should have
            kernel_size: the size of each convolutional filter, equivalent to (kernel_size, kernel_size)
            stride: the stride of the convolution
            final_layer: a boolean, true if it is the final layer and false otherwise 
                      (affects activation and batchnorm)
        '''

        #     Steps:
        #       1) Do a transposed convolution using the given parameters.
        #       2) Do a batchnorm, except for the last layer.
        #       3) Follow each batchnorm with a ReLU activation.
        #       4) If its the final layer, use a Tanh activation after the deconvolution.

        # Build the neural block
        if not final_layer:
            return nn.Sequential(
                #### START CODE HERE ####
                nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),
                nn.BatchNorm2d(output_channels),
                nn.ReLU()
                #### END CODE HERE ####
            )
        else: # Final Layer
            return nn.Sequential(
                #### START CODE HERE ####
                nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),
                nn.Tanh()
                #### END CODE HERE ####
            )

    def unsqueeze_noise(self, noise):
        '''
        Function for completing a forward pass of the generator: Given a noise tensor, 
        returns a copy of that noise with width and height = 1 and channels = z_dim.
        Parameters:
            noise: a noise tensor with dimensions (n_samples, z_dim)
        '''
        return noise.view(len(noise), self.z_dim, 1, 1)

    def forward(self, noise):
        '''
        Function for completing a forward pass of the generator: Given a noise tensor, 
        returns generated images.
        Parameters:
            noise: a noise tensor with dimensions (n_samples, z_dim)
        '''
        x = self.unsqueeze_noise(noise)
        return self.gen(x)

def get_noise(n_samples, z_dim, device='cpu'):
    '''
    Function for creating noise vectors: Given the dimensions (n_samples, z_dim)
    creates a tensor of that shape filled with random numbers from the normal distribution.
    Parameters:
        n_samples: the number of samples to generate, a scalar
        z_dim: the dimension of the noise vector, a scalar
        device: the device type
    '''
    return torch.randn(n_samples, z_dim, device=device)
    # UNQ_C2 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
'''
Test your make_gen_block() function
'''
gen = Generator()
num_test = 100

# Test the hidden block
test_hidden_noise = get_noise(num_test, gen.z_dim)
test_hidden_block = gen.make_gen_block(10, 20, kernel_size=4, stride=1)
test_uns_noise = gen.unsqueeze_noise(test_hidden_noise)
hidden_output = test_hidden_block(test_uns_noise)

# Check that it works with other strides
test_hidden_block_stride = gen.make_gen_block(20, 20, kernel_size=4, stride=2)

test_final_noise = get_noise(num_test, gen.z_dim) * 20
test_final_block = gen.make_gen_block(10, 20, final_layer=True)
test_final_uns_noise = gen.unsqueeze_noise(test_final_noise)
final_output = test_final_block(test_final_uns_noise)

# Test the whole thing:
test_gen_noise = get_noise(num_test, gen.z_dim)
test_uns_gen_noise = gen.unsqueeze_noise(test_gen_noise)
gen_output = gen(test_uns_gen_noise)
# UNIT TESTS
assert tuple(hidden_output.shape) == (num_test, 20, 4, 4)
assert hidden_output.max() > 1
assert hidden_output.min() == 0
assert hidden_output.std() > 0.2
assert hidden_output.std() < 1
assert hidden_output.std() > 0.5

assert tuple(test_hidden_block_stride(hidden_output).shape) == (num_test, 20, 10, 10)

assert final_output.max().item() == 1
assert final_output.min().item() == -1

assert tuple(gen_output.shape) == (num_test, 1, 28, 28)
assert gen_output.std() > 0.5
assert gen_output.std() < 0.8
print("Success!")
# UNQ_C3 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
# GRADED FUNCTION: Discriminator
class Discriminator(nn.Module):
    '''
    Discriminator Class
    Values:
        im_chan: the number of channels in the images, fitted for the dataset used, a scalar
              (MNIST is black-and-white, so 1 channel is your default)
    hidden_dim: the inner dimension, a scalar
    '''
    def __init__(self, im_chan=1, hidden_dim=16):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            self.make_disc_block(im_chan, hidden_dim),
            self.make_disc_block(hidden_dim, hidden_dim * 2),
            self.make_disc_block(hidden_dim * 2, 1, final_layer=True),
        )

    def make_disc_block(self, input_channels, output_channels, kernel_size=4, stride=2, final_layer=False):
        '''
        Function to return a sequence of operations corresponding to a discriminator block of DCGAN, 
        corresponding to a convolution, a batchnorm (except for in the last layer), and an activation.
        Parameters:
            input_channels: how many channels the input feature representation has
            output_channels: how many channels the output feature representation should have
            kernel_size: the size of each convolutional filter, equivalent to (kernel_size, kernel_size)
            stride: the stride of the convolution
            final_layer: a boolean, true if it is the final layer and false otherwise 
                      (affects activation and batchnorm)
        '''
        #     Steps:
        #       1) Add a convolutional layer using the given parameters.
        #       2) Do a batchnorm, except for the last layer.
        #       3) Follow each batchnorm with a LeakyReLU activation with slope 0.2.

        # Build the neural block
        if not final_layer:
            return nn.Sequential(
                #### START CODE HERE #### #
                nn.Conv2d(input_channels, output_channels, kernel_size, stride),
                nn.BatchNorm2d(output_channels),
                nn.LeakyReLU(0.2)
                #### END CODE HERE ####
            )
        else: # Final Layer
            return nn.Sequential(
                #### START CODE HERE #### #
                nn.Conv2d(input_channels, output_channels, kernel_size, stride)
                #### END CODE HERE ####
            )

    def forward(self, image):
        '''
        Function for completing a forward pass of the discriminator: Given an image tensor, 
        returns a 1-dimension tensor representing fake/real.
        Parameters:
            image: a flattened image tensor with dimension (im_dim)
        '''
        disc_pred = self.disc(image)
        return disc_pred.view(len(disc_pred), -1)
        # UNQ_C4 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
'''
Test your make_disc_block() function
'''
num_test = 100

gen = Generator()
disc = Discriminator()
test_images = gen(get_noise(num_test, gen.z_dim))

# Test the hidden block
test_hidden_block = disc.make_disc_block(1, 5, kernel_size=6, stride=3)
hidden_output = test_hidden_block(test_images)

# Test the final block
test_final_block = disc.make_disc_block(1, 10, kernel_size=2, stride=5, final_layer=True)
final_output = test_final_block(test_images)

# Test the whole thing:
disc_output = disc(test_images)
# Test the hidden block
assert tuple(hidden_output.shape) == (num_test, 5, 8, 8)
# Because of the LeakyReLU slope
assert -hidden_output.min() / hidden_output.max() > 0.15
assert -hidden_output.min() / hidden_output.max() < 0.25
assert hidden_output.std() > 0.5
assert hidden_output.std() < 1

# Test the final block

assert tuple(final_output.shape) == (num_test, 10, 6, 6)
assert final_output.max() > 1.0
assert final_output.min() < -1.0
assert final_output.std() > 0.3
assert final_output.std() < 0.6

# Test the whole thing:

assert tuple(disc_output.shape) == (num_test, 1)
assert disc_output.std() > 0.25
assert disc_output.std() < 0.5
print("Success!")
criterion = nn.BCEWithLogitsLoss()
z_dim = 64
display_step = 500
batch_size = 128
# A learning rate of 0.0002 works well on DCGAN
lr = 0.0002

# These parameters control the optimizer's momentum, which you can read more about here:
# https://distill.pub/2017/momentum/ but you don’t need to worry about it for this course!
beta_1 = 0.5 
beta_2 = 0.999
device = 'cuda'

# You can tranform the image values to be between -1 and 1 (the range of the tanh activation)
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,)),
])

dataloader = DataLoader(
    MNIST('.', download=False, transform=transform),
    batch_size=batch_size,
    shuffle=True)
    gen = Generator(z_dim).to(device)
gen_opt = torch.optim.Adam(gen.parameters(), lr=lr, betas=(beta_1, beta_2))
disc = Discriminator().to(device) 
disc_opt = torch.optim.Adam(disc.parameters(), lr=lr, betas=(beta_1, beta_2))

# You initialize the weights to the normal distribution
# with mean 0 and standard deviation 0.02
def weights_init(m):
    if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
        torch.nn.init.normal_(m.weight, 0.0, 0.02)
    if isinstance(m, nn.BatchNorm2d):
        torch.nn.init.normal_(m.weight, 0.0, 0.02)
        torch.nn.init.constant_(m.bias, 0)
gen = gen.apply(weights_init)
disc = disc.apply(weights_init)
n_epochs = 50
cur_step = 0
mean_generator_loss = 0
mean_discriminator_loss = 0
for epoch in range(n_epochs):
    # Dataloader returns the batches
    for real, _ in tqdm(dataloader):
        cur_batch_size = len(real)
        real = real.to(device)

        ## Update discriminator ##
        disc_opt.zero_grad()
        fake_noise = get_noise(cur_batch_size, z_dim, device=device)
        fake = gen(fake_noise)
        disc_fake_pred = disc(fake.detach())
        disc_fake_loss = criterion(disc_fake_pred, torch.zeros_like(disc_fake_pred))
        disc_real_pred = disc(real)
        disc_real_loss = criterion(disc_real_pred, torch.ones_like(disc_real_pred))
        disc_loss = (disc_fake_loss + disc_real_loss) / 2

        # Keep track of the average discriminator loss
        mean_discriminator_loss += disc_loss.item() / display_step
        # Update gradients
        disc_loss.backward(retain_graph=True)
        # Update optimizer
        disc_opt.step()

        ## Update generator ##
        gen_opt.zero_grad()
        fake_noise_2 = get_noise(cur_batch_size, z_dim, device=device)
        fake_2 = gen(fake_noise_2)
        disc_fake_pred = disc(fake_2)
        gen_loss = criterion(disc_fake_pred, torch.ones_like(disc_fake_pred))
        gen_loss.backward()
        gen_opt.step()

        # Keep track of the average generator loss
        mean_generator_loss += gen_loss.item() / display_step

        ## Visualization code ##
        if cur_step % display_step == 0 and cur_step > 0:
            print(f"Step {cur_step}: Generator loss: {mean_generator_loss}, discriminator loss: {mean_discriminator_loss}")
            show_tensor_images(fake)
            show_tensor_images(real)
            mean_generator_loss = 0
            mean_discriminator_loss = 0
        cur_step += 1

这周的作业比较简单


文章作者: keevinzha
版权声明: 咳咳想白嫖文章?本文章著作权归作者所有,任何形式的转载都请注明出处。 https://www.keevinzha.com !
  目录